Amusia is a musical disorder that appears mainly as a defect in processing pitch but also encompasses Musical Memory and recognition. Two main classifications of amusia exist: acquired amusia, which occurs as a result of brain damage, and Birth defect amusia, which results from a music-processing anomaly present since birth.
Studies have shown that congenital amusia is a deficit in fine-grained pitch discrimination. Early estimates suggested that 4% of the population has this disorder. More recent direct counts based on a sample of 20,000 people indicate a true rate closer to 1.5%. Acquired amusia may take several forms. Patients with brain damage may experience the loss of ability to produce musical sounds while sparing speech, much like aphasia lose speech selectively but can sometimes still singing.Dorgueille, C. 1966. Introduction à l'étude des amusies. Unpublished doctoral dissertation, Université de la Sorbonne, Paris. Other forms of amusia may affect specific sub-processes of music processing. Current research has demonstrated dissociations between rhythm, melody, and emotional processing of music.Sacks, Oliver. (2007). Musicophilia, New York: Random House. pp. 3–17, 187–258, 302–03. Amusia may include impairment of any combination of these skill sets.
Clinical symptoms of acquired amusia are much more variable than those of congenital amusia and are determined by the location and nature of the lesion. Brain injuries may affect motor or expressive functioning, including the ability to sing, whistle, or hum a tune (oral-expressive amusia), the ability to play an instrument (instrumental amusia or musical apraxia), and the ability to write music (musical agraphia). Additionally, brain damage to the receptive dimension affects the faculty to discriminate tunes (receptive or sensorial amusia), the ability to read music (musical alessia), and the ability to identify songs that were familiar prior to the brain damage (amnesic amusia).
Those with congenital amusia show impaired performance on discrimination, identification and imitation of sentences with intonational differences in pitch direction in their final word. This suggests that amusia can in subtle ways impair language processing.
In China and other countries where tonal languages are spoken, amusia may have the more pronounced social and emotional impact of experiencing difficulty in speaking and understanding the language. However, context clues are often strong enough to determine the correct meaning, similarly to how can be understood.
Amusia is also similar to aphasia in that they affect similar areas of the human brain near the temporal lobe. Most cases of those with amusia do not show any symptoms of aphasia. However, a number of cases have shown that those who have aphasia can exhibit symptoms of amusia, especially in acquired aphasia. The two are not mutually exclusive, nor does having one imply possession of the other. In acquired amusia, inability to perceive music correlates with an inability to perform other higher-level functions. In this case, as musical ability improves, so too do the higher cognitive functions which suggests that musical ability is closely related to these higher-level functions, such as memory and learning, mental flexibility, and semantic fluency.
Amusia can also be related to aprosody, a disorder in which the person's speech is affected, becoming extremely monotonous. It has been found that both amusia and aprosody can arise from seizures occurring in the non-dominant hemisphere. They can also both arise from lesions to the brain, as can Broca's aphasia come about simultaneously with amusia from injury. There is a relation between musical abilities and the components of speech; however, it is not understood very well.
This musical pitch disorder represents a phenotype that serves to identify the associated neuro-genetic factors. Both MRI-based brain structural analyses and electroencephalography (EEG) are common methods employed to uncover brain anomalies associated with amusia (See Neuroanatomy). Additionally, voxel-based morphometry (VBM) is used to detect anatomical differences between the MRIs of amusic brains and musically intact brains, specifically with respect increased and/or decreased amounts of white and grey matter.
Tone-deaf people seem to be disabled only when it comes to music as they can fully interpret the prosody or intonation of human speech. Tone deafness has a strong negative correlation with belonging to societies with . This could be evidence that the ability to reproduce and distinguish between notes may be a learned skill; conversely, it may suggest that the genetic predisposition towards accurate pitch discrimination may influence the linguistic development of a population towards tonality. A correlation between allele frequencies and linguistic typological features has been recently discovered, supporting the latter hypothesis.
Tone deafness is also associated with other musical-specific impairments such as the inability to keep time with music (beat deafness, or the lack of rhythm), or the inability to remember or recognize a song. These disabilities can appear separately, but some research shows that they are more likely to appear in tone-deaf people. Experienced musicians, such as W. A. Mathieu, have addressed tone deafness in adults as correctable with training.
Results showed that there was no significant difference in the distribution of left and right hemisphere lesions between amusic and non-amusic groups, but that the amusic group had a significantly higher number of lesions to the frontal lobe and auditory cortex. Temporal lobe lesions were also observed in patients with amusia. Amusia is a common occurrence following an ischemic MCA stroke, as evidenced by the 60% of patients who were found to be amusic at the one-week post-stroke stage. While significant recovery takes place over time, amusia can persist for long periods of time. Test results suggest that acquired amusia and its recovery in the post-stroke stage are associated with a variety of cognitive functions, particularly attention, executive functioning and working memory.
Prolonged exposure to music develops and refines these skills. Extensive musical training does not seem to be necessary in the processing of chords and keys. The development of musical competence most likely depends on the encoding of pitch along musical scales and maintaining a regular pulse, both of which are key components in the structure of music and aid in perception, memory, and performance. Also, the encoding of pitch and temporal regularity are both likely to be specialized for music processing. Pitch perception is absolutely crucial to processing music. The use of scales and the organization of scale tones around a central tone (called the tonic) assign particular importance to notes in the scale and cause non-scale notes to sound out of place. This enables the listener to ascertain when a wrong note is played. However, in individuals with amusia, this ability is either compromised or lost entirely.
Music-specific neural networks exist in the brain for a variety of music-related tasks. It has been shown that Broca's area is involved in the processing of musical syntax.Burkhard Maess, Stefan Koelsch, Thomas C. Gunter and Angela D. Friederici. "Musical syntax is processed in Broca's area: an MEG study" (2001) Nature Publishing Group. Furthermore, brain damage can disrupt an individual's ability to tell the difference between tonality and atonality music and detect the presence of wrong notes, but can preserve the individual's ability to assess the distance between pitches and the direction of the pitch. The opposite scenario can also occur, in which the individual loses pitch discrimination capabilities, but can sense and appreciate the tonal context of the work. Distinct neural networks also exist for music memories, singing, and music recognition. Neural networks for music recognition are particularly intriguing. A patient can undergo brain damage that renders them unable to recognize familiar melodies that are presented without words. However, the patient maintains the ability to recognize spoken lyrics or words, familiar voices, and environmental sounds. The reverse case is also possible, in which the patient cannot recognize spoken words, but can still recognize familiar melodies. These situations overturn previous claims that speech recognition and music recognition share a single processing system. Instead, it is clear that there are at least two distinct processing modules: one for speech and one for music.
Many research studies of individuals with amusia show that a number of cortical regions appear to be involved in processing music. Some report that the primary auditory cortex, secondary auditory cortex, and limbic system are responsible for this faculty, while more recent studies suggest that lesions in other cortical areas, abnormalities in cortical thickness, and deficiency in neural connectivity and brain plasticity may contribute to amusia. While various causes of amusia exist, some general findings that provide insight to the brain mechanisms involved in music processing are discussed below.
While the possibility that certain individuals may be born with musical deficits is not a new notion, the first documented case of congenital amusia was published only in 2002. The study was conducted with a female volunteer, referred to as Monica, who declared herself to be musically impaired in response to an advertisement in the newspaper. Monica had no psychiatric or neurological history, nor did she have any hearing loss. MRI scans showed no abnormalities. Monica also scored above average on a standard intelligence test, and her working memory was evaluated and found to be normal. However, Monica had a lifelong inability to recognize or perceive music, which had persisted even after involvement with music through church choir and band during her childhood and teenage years. Monica said that she does not enjoy listening to music because, to her, it sounded like noise and evoked a stressful response.
In order to determine if Monica's disorder was amusia, she was subjected to the MBEA series of tests. One of the tests dealt with Monica's difficulties in discriminating pitch variations in sequential notes. In this test, a pair of melodies was played, and Monica was asked if the second melody in the pair contained a wrong note. Monica's score on this test was well below the average score generated by the control group. Further tests showed that Monica struggled with recognizing highly familiar melodies, but that she had no problems in recognizing the voices of well-known speakers. Thus, it was concluded that Monica's deficit seemed limited to music. A later study showed that not only do amusics experience difficulty in discriminating variations in pitch, but they also exhibit deficits in perceiving patterns in pitch.
This finding led to another test that was designed to assess the presence of a deficiency in pitch perception. In this test, Monica heard a sequence of five piano tones of constant pitch followed by a comparison sequence of five piano tones in which the fourth tone could be the same pitch as the other notes in the sequence or a completely different pitch altogether. Monica was asked to respond "yes" if she detected a pitch change on the fourth tone or respond "no" if she could not detect a pitch change. Results showed that Monica could barely detect a pitch change as large as two (whole tone), or half steps. While this pitch-processing deficit is extremely severe, it does not seem to include speech intonation. This is because pitch variations in speech are very coarse compared with those used in music. In conclusion, Monica's learning disability arose from a basic problem in pitch discrimination, which is viewed as the origin of congenital amusia.
Social and emotional
Related diseases
Diagnosis
Classifications
Congenital amusia
Acquired amusia
Neuroanatomy
Pitch relations
Temporal relations
Memory
Other regions of the brain possibly linked to amusia
Treatment
History
Research
Notable cases
In fiction
See also
Further reading
External links
|
|